Parameter estimation of quantized DARMA systems using weighted least squares

نویسندگان

چکیده

This paper is concerned with parameter estimate of deterministic autoregressive moving average (DARMA) systems uniform quantized output observations. By designing system input signals, the recursive least-squares algorithm designed weights proved to have convergence properties under signal quantizer. The authors analyse size quantization error, which implies that can be achieved when error satisfies some conditions. A numerical example supplied demonstrate theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power System State Estimation Using Weighted Least Squares (WLS) and Regularized Weighted Least Squares(RWLS) Method

In this paper, a new formulation for power system state estimation is proposed. The formulation is based on regularized least squares method which uses the principle of Thikonov’s regularization to overcome the limitations of conventional state estimation methods. In this approach, the mathematical unfeasibility which results from the lack of measurements in case of ill-posed problems is elimin...

متن کامل

Empirical Distributions in Least Squares Estimation for Distributed Parameter Systems

We consider the estimation of error distributions in least squares identiication of distributed parameter systems. Asymptotic properties of approximate error sequences are developed. In particular, we examine consistency and asymptotic normality of empirical estimates of the error distribution. The consistency obtained is analogous to the Glivenko-Cantelli theorem. For asymptotic normality, we ...

متن کامل

Least-squares parameter estimation for systems with irregularly missing data

This paper considers the problems of parameter identification and output estimation with possibly irregularly missing output data, using output error models. By means of an auxiliary model (or reference model) approach, we present a recursive least-squares algorithm to estimate the parameters of missing data systems, and establish convergence properties for the parameter and missing output esti...

متن کامل

Decomposition Methods for Least Squares Parameter Estimation

In this paper least squares method with matrix decomposition is revisited and a multiple model formulation is proposed The proposed formulation takes advantage of the well established decomposition methods but possesses a multiple model structure which leads to simpler and more exible implementations and produces more infor mation than the original least squares methods Several application exam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Iet Control Theory and Applications

سال: 2023

ISSN: ['1751-8644', '1751-8652']

DOI: https://doi.org/10.1049/cth2.12507